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Abstract Shade-tolerant non-native invasive plant

species may make deep incursions into natural plant

communities, but detecting such species is challenging

because occurrences are often sparse. We developed

Bayesian models of the distribution of Microstegium

vimineum in natural plant communities of the southern

Blue Ridge Mountains, USA to address three objec-

tives: (1) to assess local and landscape factors that

influence the probability of presence of M. vimineum;

(2) to quantify the spatial covariance error structure in

occurrence that was not accounted for by the environ-

mental variables; and (3) to synthesize our results with

previous findings to make inference on the spatial

attributes of the invasion process. Natural plant

communities surrounded by areas with high human

activity and low forest cover were at highest risk of M.

vimineum invasion. The probability of M. vimineum

presence also increased with increasing native species

richness and soil pH, and decreasing basal area of

ericaceous shrubs. After accounting for environmental

covariates, evaluation of the spatial covariance error

structure revealed that M. vimineum is invading the

landscape by a hierarchical process. Infrequent long-

distance dispersal events result in new nascent sub-

populations that then spread via intermediate- and

short-distance dispersal, resulting in 3-km spatial

aggregation pattern of sub-populations. Containment

or minimisation of its impact on native plant commu-

nities will be contingent on understanding how M.

vimineum can be prevented from colonizing new

suitable habitats. The hierarchical invasion process

proposed here provides a framework to organise and

focus research and management efforts.

Keywords Invasive species � Propagule pressure �
Soil fertility � Species-distribution model � Variogram

Introduction

Non-native invasive plant species are major threats to

ecosystem structure and function (Asner et al. 2008;

Hejda et al. 2009; Vitousek et al. 1987; Wilcove et al.

1998). Patterns of invasion result from a combination
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of species’ traits, propagule pressure and variation in

the local environment and surrounding landscape

(Eschtruth and Battles 2011; Kumar et al. 2006;

Lonsdale 1999). A common research finding is that

invasive plant species abundance increases with

human-related disturbance and movement of propa-

gules along roads, trails and water ways (Hodkinson

and Thompson 1997; Pollnac et al. 2012; Von der

Lippe and Kowarik 2007). Establishment rates are

lower in intact natural areas (Lonsdale 1999) where

disturbance and invasive propagule pressure are

generally low (Eschtruth and Battles 2009b), but

shade-tolerant invasives can threaten protected natural

areas and have detrimental long-term impacts on intact

forests (Martin et al. 2009). Understanding the spatial

patterns of such invasions is critical for anticipating

future changes in forest understory composition.

Furthermore, models that predict vulnerability of

intact forest can help target locations where control

is likely to be warranted and effective.

Species distribution modelling is a common tool for

examining species’ responses to environmental con-

ditions (Austin and Meyers 1996; Matthiopoulos et al.

2004; Midgley et al. 2002), but applying it to patterns

of invasive species can be challenging. In its most

simple form, a distribution model assumes that a

species is distributed according to environmental

conditions, and that individuals in a population have

equal chance of arriving at all locations in a specified

study area. However, invasive species are often not in

equilibrium with their environment, making species-

habitat relationships difficult to detect. The species

may be absent from favourable areas because the

species has not yet arrived in those locations.

Conversely, the species may be present in less

favourable areas if they are proximal to an established

population and subject to high propagule pressure.

Habitat relationships in such ‘pioneer’ regions may

differ substantially from regions in which the invasive

is already widespread (Albright et al. 2009).

If an invasive species is not well-established across a

landscape, there may be residual spatial structure (i.e.,

autocorrelation in model residuals) in its distribution

that is not explained by environmental variables

(Henebry 1995; Wagner and Fortin 2005). Residual

spatial structure is often considered problematic

because it can lead to inflated type I error rates (Cliff

and Ord 1981; Lichstein et al. 2002) or erroneous

inference on model parameters (Kühn 2007). However,

if the spatial environment is sufficiently represented by

explanatory variables and the spatial covariance error

structure is modelled appropriately to remove spatial

autocorrelation from the residuals, inference on model

parameters should be correct (Bannerjee et al. 2004;

Wagner and Fortin 2005). Importantly, the spatial

covariance error structure can also provide insight into

biological process (Legendre 1993; Palma et al. 1999).

Spatial covariance error structure in an invasive-plant-

species model should indicate a lack of equilibrium in

species’ distribution in the landscape (e.g. not present in

suitable areas) and identify the spatial scale of estab-

lishment around a focal source of propagules.

Detecting occurrence is another challenge for

distribution modelling of an invasive species early in

the invasion process. Sparse occurrences may make

field sampling and robust modelling difficult. Existing

vegetation survey data (often collected for other

purposes) can provide a valuable resource for detecting

invasions (Sagarin and Pauchard 2010). The use of

existing data sources is becoming more feasible

because new statistical methods can test predicted

relationships among variables and quantify residual

spatial structure even when sampled occurrences are

sparse within a large data set (Ibañez et al. 2009;

Latimer et al. 2009). In this study, we analyzed

vegetation data that were collected in natural plant

communities over 7 years across a 16,000-km2 moun-

tainous region to characterize undisturbed plant com-

munities, but in which the presence of a non-native

shade-tolerant invasive herb also was recorded. We

modeled the species occurrence in these relatively

undisturbed plant communities to identify plot- and

landscape-level covariates that influence its distribu-

tion and to quantify the spatial covariance error

structure to make inference on the invasion process.

Our focal species was Microstegium vimineum

(Trin.) A. Camus (Japanese stilt grass), a C4 annual

grass native to Asia (Barden 1987). It was first

recorded in the eastern United States in 1917 (Fair-

brothers and Gray 1972) and is now widely distributed

(Redman 2008). M. vimineum is highly shade tolerant

(Winter et al. 1982) but can establish in both sunny and

shady areas (Cheplick 2010) and both disturbed and

undisturbed habitats (Huebner 2010a; Martin et al.

2009). Once established, it can become the dominant

herbaceous species in invaded areas (Barden 1987;

Cole and Weltzin 2005; Redman 2008), altering

community composition (Barden 1987; Fairbrothers
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and Gray 1972), suppressing forest succession (Flory

and Clay 2006, 2010), and changing ecosystem

processes (Ehrenfeld et al. 2001; Fraterrigo et al.

2011; Kourtev et al. 1998; Strickland et al. 2011). M.

vimineum is a prolific seeder (Cheplick and Fox 2011),

but seed production is reduced in deep shade relative

to high-light environments (Huebner 2010a). Little is

known about the dispersal modes of M. vimineum

(Warren et al. 2011b), and despite its wide distribu-

tion, empirical evidence suggests that it is a poor local

disperser (Cheplick 2010; Warren et al. 2011b). At

fine spatial scales, it forms dense, discrete patches, and

evidence suggests that this pattern is influenced by

mid-story canopy cover and soil pH (Cole and Weltzin

2004, 2005). Roadside surveys found M. vimineum to

be more common in lower-elevation watersheds with

less forest cover and located closer to an urban center

(Kuhman et al. 2010), but the extent to which it has

penetrated the extensive closed-canopy forests of the

region is not known. Given the extensive research

results available on environmental factors that influ-

ence the establishment and reproduction of M. vimi-

neum, our objectives were: (1) to develop a region-

wide explanatory model that included important

broad- and fine-scale factors; (2) to quantify the

spatial covariance error structure in M. vimineum

occurrence that was not accounted for by the environ-

mental variables; and (3) to synthesize our results with

previous findings to make inference on the spatial

attributes of the invasion process.

The establishment of M. vimineum should be

influenced by propagule pressure and suitability of

growing conditions for herbaceous species with sim-

ilar requirements (Eschtruth and Battles 2011). Con-

sequently, we anticipated that the probability of

presence would increase with increasing proximity

to human vectors for propagules (roads and develop-

ment) and decrease with increasing intact forest cover.

At the scale of this study, we expected invasives to do

well in environments where many species of native

herbs do well (Lonsdale 1999; Sandel and Corbin

2010; Stohlgren et al. 1999); therefore, we expected a

positive relationship between native herbaceous spe-

cies richness and the probability of presence of M.

vimineum (Flory et al. 2011). In particular, increasing

soil pH and cation concentrations should facilitate

establishment of M. vimineum (Adams and Engelhardt

2009; Peet et al. 1998, 2003). Shading by trees and

shrubs is not expected to inhibit the shade-tolerant M.

vimineum; however, an increasing local abundance of

acidophilic Ericaceae shrubs and associated decreas-

ing pH and soil N availability, and recalcitrant leaf

litter (Bloom and Mallik 2006; Clinton and Vose

1996; Horton et al. 2009; Nordin et al. 2001) should

correspond with a decreasing probability of presence.

Finally, we expected the occurrence of M. vimineum

would not be at equilibrium with the environment (e.g.

not present in many areas predicted to be suitable),

because of its limited dispersal. However, because it

is wide spread in the region (Redman 2008), we

anticipated a hierarchical invasion process in which

infrequent long-distance dispersal to nascent sub-

populations was followed by spread via intermediate-

and short-distance dispersal (Auld and Coote 1980).

Methods

Study site and data acquisition

Data for this analysis were collected in the Southern

Blue Ridge Province of the southern Appalachian

Asheville 

North Carolina 

Tennessee

Fig. 1 Location of study in western North Carolina in the

eastern part of the USA. Vegetation plots are indicated with

black dots
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Mountains in western North Carolina, USA (Fig. 1).

The region is largely forested and characterized by

high topographic variation (250 m–2,037 m asl). We

extracted data from the database of the Carolina

Vegetation Survey (CVS), which collects comprehen-

sive data to characterise the natural vegetation of the

region (Peet et al. 1998, 2005). Sampling plots of the

CVS were located in areas that were deemed to

represent natural forest cover. At each plot a stan-

dardized CVS sampling protocol was conducted in a

single plot in which vegetation data were collected

from adjacent 10 9 10-m quadrats (Peet et al. 1998).

The number of quadrats varied across plots, but most

commonly 10 quadrats (1,000 m2) were recorded as a

2 9 5 array. In the data analysis (see below), we

accounted for un-equal sampling effort across plots.

The presence or absence of M. vimineum was often

only recorded at the plot level, and therefore the plot

was the experimental unit in this study. We extracted

data collected from 1995 to 2001 during which there

were 26 occurrences of M. vimineum out of 434 plots

that were sampled one time only.

Plot covariates

Plot covariates were those that were collected by the

CVS. At each plot the CVS quantified the native

herbaceous species richness, basal area of woody

species, and soil conditions. We calculated the mean

herb species richness as the mean number of herb

species per quadrat. Shrub and tree basal area was the

basal area of woody vegetation with a diameter at

breast height (dbh) of \5 and C5 cm, respectively,

divided by the area sampled. The basal area of

ericaceous shrubs (Rhododendron spp. and Kalmia

spp.) was also extracted separately from the CVS data

base and divided by area sampled. Soil pH, and

concentrations (parts per million) of calcium, magne-

sium and manganese were measured in samples

collected from the top 10 cm of mineral soil from

each sampling quadrat (after removal of litter layer;

Peet et al. 1998, 2003). Mean values for each soil

chemistry attribute across all quadrats in plot were

used in the analysis. While soil chemistry can vary

at multiple spatial scales (Ettema and Wardle 2002)

we were interested in the relationship between

broad-scale patterns in soils and the presence of

M. vimineum.

Landscape covariates

Landscape covariates (Table 1) were those derived

from GIS data at 30-m pixel resolution and were

spatially associated with the CVS data. Elevation,

slope and aspect were created from a digital elevation

map obtained from the National Elevation Database

(Gesch et al. 2002). Aspect was transformed to

‘‘southwestness’’ (sw):

sw ¼ 1=2 cosð202� aÞ þ 1

where a is aspect. This index represents the directional

deviation from the sun at the warmest time of the day

(Beers et al. 1996). We calculated an insolation index

(s):

s ¼ 2 sinððb=90Þ � 180Þ � sw� 1

which incorporates slope (b) and the transformed

southwestness variable (sw; Gustafson et al. 2003).

We created a relative-slope-position index, which was

a continuous measure of the height of a pixel relative

to its neighbors in a 7 9 7 pixel neighborhood

(4.41 ha; Homer et al. 2004). This index varies from

100 if a pixel was on a summit or ridge (higher than all

neighbouring pixels), to 0 if it was the lowest in the

neighbourhood, such as in a valley.

We used raster data with a 30-m pixel resolution

from the National Land Cover Database (NLCD;

Homer et al. 2004) to create variables describing forest

cover and human development within 7 9 7 pixel

neighbourhood surrounding each plot. We calculated

the percentage of pixels with forest cover, impervi-

ous surface and human development, and Fragstats

(McGarigal and Marks 1995) was used to calculate

forest-edge density. Lastly, we used GIS data on roads

obtained from the Coweeta Long Term Ecological

Research website (http://coweeta.ecology.uga.edu) to

quantify road density in m/ha and to calculate distance

to nearest road.

Modelling approach

At the core of our statistical analysis was logistic

regression, which incorporated overdispersion by

including a random error term that allowed for spatial

autocorrelation. This was a non-standard approach;

therefore we employed a hierarchical Bayesian frame-

work to make inference on a complex dataset in which

observations of presence were sparse (Clark 2005).

D. P. Anderson et al.
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Hierarchical Bayes decomposes complex models into

simpler data, process, and parameter sub-models,

whose parameters are iteratively estimated condi-

tioned on each other. Inference is exact because it

avoids the asymptotic theory of classical statistics,

which cannot incorporate complex relationships

within a single-level model (see Carlin et al. 2006).

This approach allowed us to model robustly the two

process models that were the focus of our research

questions: probability of M. vimineum presence; and

the residual error structure (details below). Bayesian

logic incorporates external knowledge or expert

opinion of parameter distributions (priors), which are

subsequently updated using new data, producing

posterior estimates. It is generally not possible to

compute the posteriors of hierarchical models analyt-

ically, therefore we used Markov chain Monte Carlo

(MCMC) to fit the models numerically (Clark 2007,

Chap. 7). The MCMC simulation is used to generate

random walks (‘‘chains’’) through the multivariate

target-parameter distributions. Samples are drawn

sequentially from sampling distributions, and param-

eter estimates are conditional on the values of all other

parameters. After convergence, the parameter esti-

mates from the MCMC iterations form the posterior

parameter distributions, on which we make inference

by evaluating summary statistics.

Because of the high number of landscape and plot-

level covariates and the inherent multicollinearity, we

used principal component analysis (PCA) to reduce

the variables to orthogonal axes. The PCA was

conducted separately for landscape and plot variables

so as to facilitate the differentiation of local and

landscape effects on M. vimineum. All plot and

landscape covariates were included in the respective

PCA analyses. We then explored a set of 11 a priori

Table 1 Data elements

used in analysis and the

minimum, median and

maximum non-transformed

values

Data elements Description Min. Median Max.

yij Presence or absence of M. vimineum

ni Number of quadrats 1 10 10

Plot-level variables

Herb_rich Mean number of native species 15 44 144

Shrub_ba Basal area of shrubs/no. quadrats 3.9E-4 0.79 16.30

Tree_ba Basal area of trees/no. quadrats 0.00 33.09 344.90

EricaceaeShrub Basal area of Ericaceae shrubs 2.0E-4 0.47 40.92

pH Soil pH 3.00 4.50 7.28

Ca Soil calcium concentration 24.25 306.20 5,298.00

Mg Soil magnesium concentration 5.25 65.00 700.00

Mn Soil manganese concentration 0.25 32.00 493.00

PlotPCA1 PCA axis 1 plot-level variables -5.43 -1.26 4.56

PlotPCA2 PCA axis 2 plot-level variables -1.55 -1.71 6.96

Landscape variables

Slope Slope steepness in degrees 0.00 18.00 66.00

Terrain Relative slope-position index 0.00 49.50 100

Impervious Percent area impervious surface 0.00 0.00 0.14

Developed Percent area of human development 0.00 0.00 0.75

ForestCover Percent area of forest cover 0.20 1.00 1.00

Elevation Elevation (m) 277.00 1,057.00 1,887.00

Southwest Southwestness aspect index 0.00 0.44 1.00

Solar Insolation index -0.99 -0.02 0.99

RoadDensity Road density (m ha-1) 0.00 0.92 60.90

DistRoad Distance to nearest road (m) 0.00 290.00 1,991.00

EdgeDensity Forest-edge density (m ha-1) 0.00 0.00 292.00

LandscapePCA1 PCA axis 1 landscape variables -2.18 -0.71 9.82

LandscapePCA2 PCA axis 2 landscape variables -2.59 0.06 3.46
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models to test the effects of landscape (human

impacts) and plot (local conditions) variables on M.

vimineum presence. The first 10 were composed of all

combinations of the first two landscape- and plot-

principal-component axes. The eleventh model was an

intercept-only model and was included to provide a

baseline with which to compare the explanatory

strength of the preceding covariate models.

Data analysis

We analyzed the data with a spatial logistic regression.

The presence/absence data (yij) across plots (i) and

years (j) were modelled as a Bernouilli process:

yij ¼ Bernouilli(hijÞ ð1Þ

hij ¼ 1� ð1� kijÞni ð2Þ

logitðkijÞ ¼ X0ibþ aj þ ei ð3Þ

where hij was the probability of a presence in plot

i within one or more sampled quadrats, kij was the

probability of presence in a single quadrat in plot i, ni

was the number of quadrats sampled in plot i, Xib was

the product of the environmental covariates and the

associated coefficients, aj was a random year effect,

and ei were the spatially structured prediction errors

(see below). This modelling approach accounted for

differing sampling effort among plots and data

obtained from multiple years. Environmental covari-

ates were scaled to have a mean 0 and standard

deviation 1, which facilitates comparisons among

coefficients estimated in the model. The logit trans-

form was used to constrain the Bernouilli-distributed

probability to the range 0–1.

The probability of presence of M. vimineum at any

given location was expected to be influenced by the

presence or absence of M. vimineum at neighbouring

locations (spatial autocorrelation; Ibañez et al. 2009;

Latimer et al. 2009; Lichstein et al. 2002). Including ei

in the modelling removes the spatial autocorrelation

from the residuals and allows for appropriate inference

on the parameters (Bannerjee et al. 2004; Wagner and

Fortin 2005). The spatial autocorrelation between

pairs of ei points was expected to decay with distance.

We included a standard exponential spatial covariance

error structure (Cs) to account for spatial autocorrela-

tion not explained by the environmental covariates:

ei�MultiVariateNormal(0;CsÞ ð4Þ

Cs ¼ r2e� udð Þ ð5Þ

where r2 was the variance, u was a correlation-

distance parameter, and d was the distance between

plots (Cressie 1993).

We used weakly informative Cauchy priors with

center 0 and scale 2.5 for covariates, and scale 10 for the

intercept and year-effect parameters (Gelman et al.

2008). Slightly informative lognormal priors were used

for the covariance parameters to obtain proper posteri-

ors (Clark 2007, pp. 410–412): r2 * logN(3,1); and

u * logN(1,1). All parameters were updated with a

Metropolis rejection algorithm following Clark (2007,

pp. 175–177). Within-chain serial autocorrelation was

assessed to determine the appropriate thinning rate.

Convergence on the posterior target distribution was

confirmed with a scale reduction factor ðR̂Þ\1:2

calculated on 4 parallel chains (Gelman et al. 2004;

Gelman and Rubin 1992). Convergence for all models

was achieved with 50,000 iterations, and posterior

summaries were taken from 4 chains containing

30,000 samples with a thinning rate of 10 (i.e.,

12,000 samples). To compare the 11 competing

models described above, we used the Deviance

Information Criterion (DIC; Spiegelhalter et al.

2002), where low values indicate better model fit than

high values. The DIC is a generalisation of the more

familiar Akaike Information Criterion (AIC; Akaike

1973; Burnham and Anderson 2002) and is commonly

used in Bayesian analysis.

Results

The first 3 axes of the principal components analysis of

the landscape variables accounted for 30.8, 19.2 and

12.5 % respectively of the variance (Table 2; Fig. 2a).

The first axis largely described the environmental

gradient from areas with high human development

(buildings, roads, impervious surfaces, and forest

edge) to areas with high forest cover and high terrain

indices. Axis 2 was dominated by the gradient from

high to low southwest aspects and solar indices. Road

density was retained in place of distance to nearest

road in the PCA as it resulted in a higher proportion of

variance explained.

D. P. Anderson et al.

123



The first 3 axes of the principal components

analysis of plot variables accounted for 61, 26 and

12 % respectively of the variance (Table 3; Fig. 2b).

The PCA performed on the plot-level variables

captured the environmental variability resulting from

the interactions among soils, herbs and woody vege-

tation. We found that the PCA model that resulted in

the highest proportion of variance explained in the first

axes included the variables for mean species richness,

Ericaceae shrub basal area, and soil pH. The exclusion

of the cation variables was further justified by

exploratory data analysis that showed that these

variables had no effect on the probability of presence

of M. vimineum. Axes 1 and 2 quantified orthogonal

gradients from low soil pH with associated high basal

area of Ericaceae shrubs to relatively high pH and high

mean species richness.

A preliminary analysis showed that models that

included year effects had high DIC values and the

95 % credible intervals (the probability that the true

value occurs within the bounds) for random year

effects all overlapped zero, indicating a lack of an

important contribution. We subsequently removed the

year effects from all models. The best model as

measured by DIC included the first landscape and plot

PCA axes (Model 6; Table 4). The DDIC value of the

next best model was 16, indicating strong evidence for

Model 6 being the best model. The models with the

second and third lowest DIC values were uni-variable

models that included LandscapePCA1 and PlotPCA1

Table 2 Results of principal components analysis of land-

scape variables, including relative importance of the first 3 axes

and the loading values for each variable within the 3 axes

Importance of components Axis 1 Axis 2 Axis 3

Standard deviation 1.82 1.38 1.12

Proportion variance 0.31 0.19 0.12

Cumulative proportion 0.31 0.50 0.62

Loadings

Slope -0.14 0.27

Terrain -0.22 0.11 -0.56

Impervious 0.25 -0.16

Developed 0.46 -0.12

Forest cover -0.49 0.14

Elevation -0.12 -0.72

Southwest -0.69

Solar -0.69 -0.12

Road density 0.40

Edge density 0.49

Loadings \0.1 are not shown

Fig. 2 First and second axes of the principal components

analysis for landscape (a) and plot-level (b) variables

Table 3 Results of principal components analysis of plot

variables, including relative importance of the first 3 axes and

the loading values for each variable within the 3 axes

Importance of components Axis 1 Axis 2 Axis 3

Standard deviation 1.35 0.89 0.61

Proportion variance 0.61 0.26 0.12

Cumulative proportion 0.61 0.87 1.00

Loadings

pH 0.60 0.48 0.64

Ericaceae shrubs -0.46 0.86 -0.21

Mean species richness 0.65 0.17 -0.74

Loadings \0.1 are not shown
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(Models 2 and 3). The intercept-only model (Model 1)

had a DDIC value of 243.

The positive regression parameter for Landscap-

ePCA1 in Model 6 indicates that as forest cover

increases (conditions associated with higher elevation,

low edge density, low development, etc.), the proba-

bility of M. vimineum presence decreases (Table 5).

The positive regression parameter for PlotPCA1

indicates that the probability of M. vimineum presence

increased with decreasing basal area of Ericaceae

shrubs, and increasing soil pH and mean species

richness of native species. Model 6 may have the most

explanatory power because it captures more com-

pletely the influence of both landscape and plot-level

environmental factors.

Models 2 and 3 examined separately the effects of

landscape and plot-level factors on M. vimineum. The

DIC value for the LandscapePCA1 model was lower

than that of the PlotPCA1 model, which provides some

evidence that landscape factors may be more

important in determining the distribution and invasion

patterns of M. vimineum throughout the study region.

In addition, the LandscapePCA1 parameter estimate

was slightly higher than PlotPCA1 in model 6

(Table 5), which indicates greater explanatory

strength because the variables were transformed so

as to be directly comparable. There was, however,

substantial overlap in the credible intervals.

The distance-correlation parameter (u) provides

strong evidence for spatial structure in the data that is

not attributable to the environmental covariates (i.e.

autocorrelation in prediction errors, ei). The inter-plot

distances in this study were relatively well distributed

across a range from approximately 0.1 to 250 km

(Fig. 3a). Inspection of an exponential variogram

generated from the posterior distributions of r2 and u
indicate that the probability of M. vimineum occur-

rence was correlated up to a distance of 3 km (Fig. 3b)

after accounting for effects of environmental

covariates.

Discussion

This study generated insights about the distribution

and spread of a non-native invasive grass in natural

plant communities of the southern Blue Ridge Moun-

tains and demonstrated a modelling approach that

could be useful for other regions and datasets.

Microstegium vimineum was infrequent in the CVS

data, which were collected as part of a state-wide

effort to characterize natural vegetation. Despite the

sparse occurrences, we were able to model the species’

distribution and quantify the spatial covariance error

Table 4 Models and

associated explanatory

variables

DDIC is shown for each

model

Bold indicates most

explanatory model

Models Model elements DDIC

Model 1 Intercept 243

Model 2 Intercept ? LandscapePCA 1 16

Model 3 Intercept ? PlotPCA1 23

Model 4 Intercept ? LandscapePCA 2 136

Model 5 Intercept ? PlotPCA2 145

Model 6 Intercept 1 LandscapePCA 1 1 PlotPCA1 0

Model 7 Intercept ? LandscapePCA 1 ? LandscapePCA2 147

Model 8 Intercept ? LandscapePCA 1 ? PlotPCA2 189

Model 9 Intercept ? LandscapePCA 2 ? PlotPCA2 276

Model 10 Intercept ? LandscapePCA 2 ? PlotPCA1 257

Model 11 Intercept ? PlotPCA1 ? PlotPCA2 149

Table 5 Posterior distribution summaries for parameters

included in the most explanatory model as assessed by DIC

(Model 6)

Model Posterior

median

Lower 95 %

CI

Upper 95 %

CI

Model 6

Intercept -6.19 -6.98 -5.52

LandscapePCA1 1.15 0.67 1.63

PlotPCA1 0.96 0.60 1.29

r2 0.59 0.48 0.75

u 0.70 0.50 0.98

Posterior median and 95 % credible intervals are shown
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structure by using Bayesian techniques. Our analysis

revealed that probability of presence was related both

to local biotic and abiotic conditions and to landscape

context, and the relationships we detected were

consistent with those reported in other regions (Honu

et al. 2009; Huebner 2010a). The model prediction

errors (ei; Eq. 3), or the additional variation in the

presence/absence data not explained by the covariates,

were spatially autocorrelated, which indicates that M.

vimineum is not yet at equilibrium in the landscape.

Combining our finding that prediction errors were

spatial autocorrelated up to 3 km with results from

other studies, evidence is emerging that M. vimineum

is invading the landscape by a hierarchical process.

Long-distance dispersal, primarily along roads

(Fig. 4; I), results in new nascent populations that

then spread via intermediate- and short-distance

dispersal (Auld and Coote 1980; Fig. 4; II and III).

Understanding the results of the spatial modelling

of the prediction errors allows inference on the broad-

scale invasion process of M. vimineum. All models are

imperfect, and this was reflected in this study as

incorrect predictions of a presence or absence. We

explicitly quantified the prediction error using the ei

term (Eq. 3), which accounts for overdispersion in

Bernouilli data and would be independently and

normally distributed in a standard non-spatial logistic

regression. The absence of M. vimineum from a

location predicted by covariates to be highly suitable,

and hence a poor model prediction, could be due to

various stochastic factors (lack of dispersal to the plot,

competition, disturbance, etc.). By estimating ei for

each data point, we effectively quantified the proba-

bility of occurrence of unknown and unobserved

random events. If the occurrence of random events

was independent across all plots, then the prediction

error (variation not explained by the covariates) would

be due to a non-spatial process (random lack of

dispersal, competition, disturbance, etc.) that influ-

ences presence or absence. Completely independent

prediction errors would indicate that the species has

had reasonable opportunity to become established in

all sampled locations, as expected for a species at

equilibrium in the landscape. However, our estimated

value of u (correlation-distance parameter; Eq. 5)
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Fig. 3 a Histogram of inter-plot distances, and b a variogram of

residuals of model 3. Median is shown with solid line and 95 %

credible intervals are dashed lines
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Fig. 4 A conceptual model of a hierarchical invasion process.

Dots represent established fine-scale clusters of M. vimineum
(e.g. 10 m2), and bold lines are roads. Long-distance dispersal

events (I) occur infrequently and result in the establishment of

nascent populations. Intermediate-distance dispersal events (II)
result in sub-populations with an average spatial-aggregation

scale of 3 km. Local spread (III) via gravity-dispersed seeds

occurs at a slow rate and is not illustrated with an arrow
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demonstrated spatial dependence in prediction-error

values, such that over- and under-predictions respec-

tively were found in close proximity to each other

(Fig. 3b). The probability of M. vimineum presence

was elevated, above and beyond the influence of

landscape and plot covariates, near previously invaded

areas and decreased exponentially up to a distance of

3 km. Similarly, the predicted probability of presence

was low in very suitable locations if M. vimineum was

not established nearby.

Microstegium vimineum has been in the eastern

United States since 1917 (Fairbrothers and Gray

1972), and Kuhman et al. (2010) documented this

species in 100 % of 25 Southern Appalachian water-

sheds surveyed and in 84 % of roadside plots. Long-

distance dispersal must occur because this species

could not otherwise have become so widely distrib-

uted, given the slow dispersal rates reported in fine-

scale studies (Huebner 2010b; Mortensen et al. 2009;

Rauschert et al. 2010). The long-distance dispersal

must primarily occur along roads or be associated with

human activity (Fig. 4; I) as these are known move-

ment corridors, were important factors in our model-

ling, and have been ubiquitous in other studies

(Cheplick 2010; Christen and Matlack 2009; Cole

and Weltzin 2004; Flory and Clay 2006, 2009;

Mortensen et al. 2009; Rauschert et al. 2010). The

exact mechanism and dispersal kernel for long move-

ments remain unknown (Warren et al. 2011b), and our

data were insufficient to shed any light on this process

(i.e., we cannot identify likely sources of nascent

populations). However, these events must be infre-

quent and stochastic because efforts to quantify

dispersal along roads have demonstrated very slow

spread (Huebner 2010b; Mortensen et al. 2009;

Rauschert et al. 2010; Warren et al. 2011a).

Following a long-distance dispersal event and

subsequent establishment, intermediate-distance dis-

persal events must also occur to generate the 3-km

spatial aggregation pattern suggested by the spatial

covariance error structure in our modelling (Fig. 4; II).

The mechanism for this dispersal also remains

unknown (Warren et al. 2011b) but must be secondary

dispersal as M. vimineum seeds generally fall very

close to the maternal plant (Huebner 2010b; Rauschert

et al. 2010; Warren et al. 2011a). Human activity is

likely responsible for intermediate-distance dispersal

along roads and trails (Cole and Weltzin 2004;

Rauschert et al. 2010). Flooding and water flow paths

that intersect a source population also have the

potential to move propagules (Mehrhoff 2000; Miller

and Matlack 2010; Warren et al. 2011a). While

increased deer density accelerates M. vimineum inva-

sion by enhancing local site conditions through

herbivory and litter disturbance (Eschtruth and Battles

2009a; Warren et al. 2011a), strong evidence of animal

dispersal does not exist (Mehrhoff 2000). The 3-km

scale represents the average size of sub-populations

and is likely to change over time as the invasive finds

its way via intermediate-distance dispersal events to

available and suitable locations.

At a local level, slow spread from maternal plants

(Fig. 4; III) results in M. vimineum mats under a

variety of conditions from roadsides to closed-canopy

forests (Cheplick 2010; Cole and Weltzin 2005; Flory

et al. 2011; Huebner 2010a). Fine-scale niche limiting

factors are likely to constrain the establishment and

spread rates (Marshall and Buckley 2008; Warren

et al. 2011a, b). In addition, our analyses highlighted

the complex and interacting factors operating at the

plot level to influence the probability of M. vimineum

presence. Similar to many native species, M. vimineum

favours more fertile sites (Peet et al. 2003), which are

associated with high pH and low basal area of

acidophilic Ericaceae shrubs. While evidence exists

for an inhibitory shading effect on M. vimineum

(Cheplick 2010; Cole and Weltzin 2005), our results

suggest that the apparent influence of woody vegeta-

tion, which is dominated by Ericaceous shrubs, on the

probability of presence is most likely a reflection of the

response of M. vimineum to the soil-fertility gradient

(see gradient in Fig. 2b).

Our results also indicated that where native richness

is high, the probability of M. vimineum presence was

greater (see Adams and Engelhardt 2009). High

herbaceous species diversity is predicted where

growing conditions are favourable and there exists

high heterogeneity in essential resources (niche par-

titioning; Chesson 2000; MacArthur 1970). At very

fine scales (generally \1 m), native herbaceous spe-

cies richness may offer some resistance to the spread

of invasives into intact plant communities via com-

petitive interactions for limited resources (Brown and

Peet 2003; Sandel and Corbin 2010; Tilman 2004). At

broader scales, such as examined in this study (plots

C100 m2), the high levels of resource heterogeneity

due to topography, vegetation, light, and edaphic

conditions should be conducive for a shade-tolerant
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invasive (Stohlgren et al. 2006). Indeed, when M.

vimineum invades and is able to achieve dominance, it

may reduce native richness (Adams and Engelhardt

2009; Flory and Clay 2010; Hejda et al. 2009), and

alter soil chemistry and arthropod communities (Frat-

errigo et al. 2011; McGrath and Binkley 2009; Simao

et al. 2010). Consequently, some high diversity plant

communities in this region could be jeopardized by

detrimental impacts of M. vimineum invasions (Bar-

den 1987; Brewer 2011; Cole and Weltzin 2004;

Ehrenfeld et al. 2001).

In conclusion, we developed Bayesian models of

the distribution of M. vimineum that incorporated

landscape- and plot-level factors, and results were

consistent with previous studies (among others; Cole

and Weltzin 2004, 2005; Honu et al. 2009; Huebner

2010a). This approach allowed us to take advantage of

an existing large data set with sparse occurrences, and

to model the spatial covariance error structure explic-

itly. At broad scales, the probability of M. vimineum

was elevated in locations surrounded by high levels of

human activity with reduced forest cover. At fine

scales, presence of M. vimineum was reduced in low

soil-fertility sites with dense Ericaceae shrub cover.

Because our multi-scale models likely explained most

of the variation in M. vimineum presence due to

environmental factors, the remaining spatial variance

not explained by the covariates allowed for inference

on the spatial attributes of the invasion process.

Explicit analysis of the spatial covariance error

structure suggested that M. vimineum is invading the

landscape by a hierarchical process resulting in 3-km

spatial autocorrelation of sub-populations (Fig. 4). If a

population is detected, extirpation efforts might best

be focused within a 3-km radius. However, to manage

the invasion of M. vimineum, a better understanding is

required of the long- and intermediate-distance dis-

persal mechanisms and attributes (i.e. dispersal-kernel

form; Warren et al. 2011a). Previous research has

provided detailed information on fine-scale factors

that limit establishment and reproductive capacity

(among others; Cheplick 2010; Huebner 2010a; Mar-

shall and Buckley 2008; Warren et al. 2011a, 2012).

However, containment or minimisation of its impact

on native plant communities will be contingent on

understanding how M. vimineum can be prevented

from colonizing new suitable habitats. The hierarchi-

cal invasion process proposed here provides a frame-

work to organise and focus research and management

efforts. Further, the present 3-km scale of aggregation,

which is likely to expand if the invasion is not impeded

(Welk 2004), provides a bench mark against which

efforts to control the invasion can be assessed.
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