This article shows how experiments at the Coweeta Hydrologic Laboratory in North Carolina have deepened our understanding of the ways in which forested catchments respond to land use change. Drainage-basin hydrology is a popular topic, often at AS. Human impact on stream discharge as a result of changes in vegetation cover is an important theme.

We are used to doing controlled experiments in the laboratory: we keep most conditions the same but by varying one variable systematically, we can see how the system output changes. The same approach can be used in small field trials (e.g. to see how crop yield varies with fertiliser application) but it is difficult to conduct such experiments at the larger landscape scale. In hydrology, one notable exception has been the use of 'paired catchments'.

Above: The Coweeta basin is in the southern Appalachians, not far from Smoky Mountain National Park. There was extensive logging in the region as people settled from the mid-eighteenth century onwards. During the twentieth century, forests were allowed to grow again.
Left: Signs giving information to visitors have long been a feature at Coweeta.
Paired catchment experiments

Most people agree that the first paired catchment experiment was conducted at Wagon Wheel Gap in Colorado, starting in 1909; this set the pattern for others to follow. For a paired catchment study, two catchments are selected, as close together and with as similar characteristics as possible. To start with, flow records are collected from both catchments - this is the control (or calibration) period. Then one catchment is 'treated' (e.g. trees are chopped down). This is the treatment period. Measurements continue and the actual flow in the treated catchment is compared to the flow predicted using data from the control catchment. This is the treatment period. Any differences between actual and predicted data are presumed to be due to the effects of the treatment. At Wagon Wheel Gap, the US Forest Service and Weather Bureau wanted to know the effect of different types of vegetation on evaporation loss; this has been a persistent theme of paired catchment research ever since.

Setting up Goweeta

Controversy over the role of forests in regulating streamflow peaked in the USA after the disastrous 1927 flood of the Mississippi, and a vigorous effort to collect information on forest cover and streamflow began. At the same time the USA was in the depths of depression, with millions unemployed and hungry. So, when the Coweeta Experimental Forest was established in the southern Appalachians in 1934, the labour needed to construct the necessary infrastructure (roads, laboratories, gauging stations, etc.) was funded by the federal government, which provided money to put the unemployed to work.

Coweeta was the brainchild of Dr Charles Hursh: he saw many purposes in setting up the study, but two were especially important. The first task was to investigate links between vegetation and runoff in undisturbed forest. The second need was to establish the relationship between agricultural land use, runoff and erosion. There was still a good deal of farming on the steep slopes of the Appalachian mountains at this time and Hursh regarded forests as 'corrective' cover, protecting soils and reducing flood risk. It was within this context that the paired catchment experiments at Coweeta began. A brief site description is provided in Inset 1.

Streamflow changes at Coweeta after disturbance

Streamflow response to clearcutting and regrowth

Long-term effects of clearcutting on water yield are important in both water resource planning and evaluation of nutrient export from forest ecosystems. There have been four experiments at Coweeta, almost 200 years of streamflow data in total. One catchment has been clearcut twice, in 1940 and 1963, with no removal of forest products and with natural regrowth allowed.

Figure 2 shows the way in which streamflow increases significantly immediately after cutting and then recovers steadily over the next two decades. Assuming an annual rainfall of 1,800 mm and a 'natural' annual runoff of 900 mm, the first-year increase of 360 mm represents an extra 40% runoff, increasing the fraction of rainfall returned as streamflow from 50% to
Clearly, if this effect is mirrored across an entire region, then the impact of forest clearance on increased runoff downstream must be significant.

Changes in annual and monthly streamflow

The effects of clearcutting on mean monthly flows are shown in Figure 3. This shows an increase in streamflow in all but one month for a catchment that was clearcut and then cut annually for 7 years. The biggest absolute differences are in November and December, when the soil in the forested catchment is still relatively dry; in the cut area, soils have wetted up more quickly and streamflow has increased accordingly. By the end of the winter, soils are equally wet in both catchments and there is no difference in streamflow. The biggest relative difference in streamflow is in the autumn when the cumulative effect of evaporation though the summer has dried out soils in the undisturbed forest. The cut area has lost less water by evaporation so there is more available to generate streamflow.

Effects of cutting on the storm hydrograph

Two aspects must be considered here: the peak flow rates and the overall increase in quickflow volume. The increase in peak discharge depends on how the forest is cut: if there is minimal disturbance then there is little effect, but the construction of roads in particular is very significant and can cause peak discharges to increase by as much as 30%. The total volume of quickflow increases in similar manner: about 10% in less disturbed clearcutting, rising to 17% where commercial logging was undertaken.

It is the increase in quickflow volume that is most significant for downstream flooding. It causes a problem because it means the total size of a flood peak downstream (i.e. the addition of all the floods from individual headwater catchments) will be greater. Thus, deforestation in regions like the Appalachians in the nineteenth and early twentieth centuries did cause an increase in flood risk in surrounding lowland areas. Hursh’s notion of forests as ‘corrective’ cover was proved correct.

It follows that afforestation should reduce flooding downstream, but only if it is done...
Species conversion

Two types of experiment were tried at Coweeta: one was the replacement of deciduous trees with evergreen white pine. Monthly flows for the pine compared to deciduous forest are shown in Figure 4. The differences are small in the summer but increase through the winter. The effect of the evergreen canopy is to intercept rainfall that would otherwise fall through to the forest floor. The interception loss element of total evaporation (see Inset 2) is therefore larger for pine because interception takes place throughout the year. Interception is most significant in the deciduous forest in summer when there are leaves on the trees.

The other experiment involved conversion from forest to grass, followed by natural succession. When the grass was fertilised (1961, 1966), there was very little difference between forest and grass, suggesting that lush grass can intercept and transpire a similar amount to a mature forest. However, as the grass declined in quality, runoff increased, amounting in 1964 and 1965 to an extra 140 mm or about one sixth of the annual total.

In 1967 and 1968 the grass was killed using herbicide and runoff increased dramatically, by about 240 mm (over 25% extra). There would still be interception by the dead grass and evaporation of soil water, but no transpiration, of course. From 1969 the catchment was allowed to regenerate naturally and soon the runoff was less than before clearance, probably due to the dense shrubs and small trees that grow rapidly at the start of the new forest succession.
Conclusions

A mature deciduous forest cover in a catchment reduces streamflow compared to a clearcut area. This result has been replicated in many places around the world and is certainly not unique to Coweeta. There is both less quickflow and less baseflow from the forested catchment. Thus, as Charles Hursh correctly surmised, forests in headwater areas provide flood protection for locations further downstream. However, if water resources are scarce, it could be argued that more water could be supplied by clearing the forest. The benefits of increased water supply would have to be set against the increased risk of flooding.

Critical thinking

(1) Explain why streamflow increases when a deciduous forest is clearcut. What are the main changes in (a) evaporation, and (b) runoff processes?

(2) Is afforestation of the British uplands different in hydrological terms from natural regrowth of forests in the Appalachians? Would the same changes be observed in both cases?

(3) What happens when a tropical forest is cleared? Would the Coweeta experiments provide a helpful guide?

(4) What happens to rates of soil erosion and nutrient leaching when a deciduous forest is clearcut?

Tim Burt is Professor of Geography at Durham University and Master of Hatfield College.

Wayne Swank was formerly Director of the Coweeta Hydrological Laboratory. Tim and Wayne have done research together for many years and are currently studying the impact of forest clearance on nutrient export from catchments.

Key points

- Paired catchment experiments are used to investigate the effect of changing vegetation cover on streamflow.
- The Coweeta Hydrological Laboratory was established to investigate the impact of forests on floods and water yield.
- Streamflow, both quickflow and baseflow, increases when deciduous forest is cleared. The biggest differences arise when soils have rewetted in the clearcut catchment but not in the forest. The effect gradually disappears as the forest regrows.
- In relation to floods, the main effect of clearcutting is to increase quickflow volumes, but there may be some increase in peak flood discharge depending on the degree of disturbance.
- Replacing deciduous forest with other types of vegetation cover can increase or decrease streamflow depending on the nature of the new species used.

Articles

Barling, M. Rural-urban migration in Colombia, 1, 15-19
Binns, T. Making development work in South Africa, 1, 30-35
Bondarev, V. and Gregory, K. Urbanisation and stream channels, 5, 10-13
Bromley, M. Debris flow hazards in the Andes, 1, 24-27
Browning, K. Shanty towns: a South African case study, 5, 2-5
Burt, T. and Swank, W. Forests or floods? 5, 37-41
Byrne, R. AIDS in Zambia: the effect on subsistence farmers, 4, 29-31
Chell, K. Coastline in decay, 3, 32-36
Collins, L. Renewable energy: Part 1 Why should we use it? 1, 2-5
Collins, L. Renewable energy: Part 2 What are the options? 2, 20-23
Dove, J. Plant distribution in the Sonoran Desert, 2, 10-13
Evans, D. Climate change and glacier fluctuation in Iceland, 4, 20-26
Fullen, M. Environmental lapse rates on the Isle of Man, 2, 24-27
Gee, N. Second homes in England and Wales, 5, 30-33
Hogg, N. and Jones, S. Transport policy and urban air pollution, 4, 34-37
Jones, P. Urban regeneration: what is it and why has it become important? 5, 24-26
Jones, P., Hillier, D. and Shears, P. Redeveloping gasworks, 4, 7-9
Kay, P. Source control and flood management, 3, 26-29
Mitchell, D. Surfs up! Predicting wave energy, 3, 2-5
Murgatroyd, T. Applied geomorphology: the example of Perurail, 4, 12-16
Oliver, S. Soil erosion and landslide hazards in Basilicata, 2, 34-37
Royle, S. Migration from Irish islands, 3, 20-23
Slatford, R. and Fishpool, J. India and the Green Revolution, 2, 2-5
Warr, S. Sustainable management of coral reefs, 4, 2-6
Webber, P. Environment and development in Botswana: a sustainable future? 2, 38-41
Webber, P. Community conservation in Botswana, 3, 11-15
White, S. Oil pollution: clearing up the myths, 5, 16-20
Woodland, W. and Hill, J. Every drop counts: water management in Tunisia, 1, 10-14

Other features

Asian Update
Macau: an introduction, 1, 36-37
Aging society in Japan, 2, 28-30
Development in Malaysia and Singapore, 3, 16-19

Developing World
Economic development in Brazil, 5, 21-23

Environment Today
Websites and global warming, 1, 28-29
The giant panda: just a logo? 4, 32-33
Conserving the world's wetlands, 5, 34-35

Europe Today
Changing industrial geography: Part 1 Steel, 2, 31-32
Changing industrial geography: Part 2 Cars, 3, 30-31

Online
Cool geography, 1, 38
Settlement, 2, 8-9
Expecting rain, 3, 24-25
The geography of food, 4, 17-18
Making waves, 5, 9

Practical Geography
Top 100 coursework ideas, 1, 20-21
Questions and hypotheses, 1, 40-41
Glaciation fieldwork, 2, 14-18
Fieldwork in rural settlements, 3, 39-41
Fieldwork in coastal areas, 4, 38-41
Transport surveys, 5, 27-29

Question and Answer
The new AS examination, 1, 6-9
Glaciation, 2, 6-7
The Advanced Extension Award, 3, 6-9
Population and settlement, 4, 10-11
Data stimulus question, 5, 6-8

Rural Issues
Crisis in the countryside, 1, 22-23
Population: the spiral of decline, 2, 32-33
The pressure to develop, 3, 9-10
The road to ruin? 4, 18-19
Tomorrow's countryside, 5, 14-15

Snapshot
It never rains but it pours, 1
Armchair geographer? 2
Lamenting the dodo, 3
Dr Beeching's axe, 4
Ibiza uncovered! 5