Estimating Sediment Yield in the Southern Appalachians using WCS-SED

Paul Bolstad, University of Minnesota, 1530 Cleveland Ave, St Paul MN 55108, pbolstad@umn.edu
Andrew Jenks, University of Minnesota, jenke008@umn.edu
Mark Riedel, USFS Coweeta Hydrologic Lab, 3150 Coweeta Lab Rd, Otto, NC 28763, mriedel@baird.com
James M. Vose, USFS Coweeta Hydrologic Lab, jvose@fs.fed.us

Abstract
We measured and modeled sediment yield over two months on five watersheds in the southern Appalachian Mountains of North Carolina. These watersheds contained first and second-order streams and are primarily forested, but span the development gradient common in this region, with up to 10 percent in suburban and transitional development and up to 27% low-intensity agriculture. Sediment yield was measured using automated pumped samplers, continuous depth measurements, and gravimetric analysis. Sediment yield was predicted using WCS-SED for the coincident period employing fine and medium-resolution elevation, soils, and land use data. Mean sediment yield varied from 0.025 to 0.344 t/ha/yr and was strongly related to the proportion of non-forest area in the watershed. Sediment yield was not related to road density within the watershed or in near stream areas. Predicted sediment yield was several times higher than observed sediment yield on four of five watersheds, with the most agriculturally developed watershed serving as the exception. Sediment yield was high over the plausible range of USLE land use and cropping factors that underlie the sediment yield predictions.

INTRODUCTION
Section 303(b) of the Clean Water Act requires that states identify water bodies that are unlikely to meet ambient water quality standards. The states must also identify a Total Maximum Daily Load (TMDL) for each constituent pollutant, and develop a plan to maintain inputs below these values. Sediment from erosion is the most common pollutant in many streams of the southeastern United States. Suspended sediment levels above 20-30 mg/L have been shown to degrade stream biotic integrity (Walters et al., 2001), and impairment may occur at lower concentrations.

Models may be used to estimate sediment generation in uplands and sediment transport to streams. However, model accuracy, appropriate parameters, and sensitivity to input data quality must be determined prior to accepting sediment yield predictions as a monitoring or management tool. When these models are spatially explicit and run in a grid-cell environment, the appropriate cell size, data sources, and model parameters must be identified.

We report on a test of one widely-use sediment model, the Watershed Characterization System – Sediment Tool (WCS-SED), developed by Tetra Tech, Inc., in cooperation with the US Environmental Protection Agency, Region 4. This model is representative of cell-based erosion generation and transport models that use the Universal Soil Loss Equation (USLE) and derivatives (Kinnell and Risse 1998, Hood et al., 2002). We measured suspended sediment transport in five small watersheds in the southern Appalachian Mountains, and compared these to sediment yield predicted with WCS-SED. We evaluated the impact of input data resolution by varying the cell size for elevation data, and the cell size and categorical detail for land use and soils data within each watershed. We estimated the importance of stream network specification, and the sensitivity of predicted sediment yield to variation in the cropping factors for each land use type.

METHODS
Study Watersheds
Analyses were conducted on five study watersheds spanning a range of areas and land use practices in the southern Appalachian Mountains, USA (Figure 1, Table 1). These watersheds represented the current and past land uses typical of many first and second order streams in the southern Appalachian. Watersheds were predominantly forested with varying histories of prior agriculture in near stream portions, and current increases in road and residential development. Two watersheds (Addie Branch and Dryman Fork) were on
US Forest Service land and differed primarily in road density, two were forested with light residential development (Reed Mill and Watauga Creek), and one was primarily forested with moderate pasture agriculture and light residential development. Roads were predominantly unpaved gravel, and road density varied within the ranges typical of the region.

Table 1: Characteristics of Study Watersheds

<table>
<thead>
<tr>
<th>Name</th>
<th>Area (ha)</th>
<th>Road density (m/ha)</th>
<th>Forest (%)</th>
<th>Agric. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addie Branch</td>
<td>574</td>
<td>6.54</td>
<td>100.0</td>
<td>0</td>
</tr>
<tr>
<td>Dryman Fork</td>
<td>153</td>
<td>42.57</td>
<td>100.0</td>
<td>0</td>
</tr>
<tr>
<td>Sutton Branch</td>
<td>132</td>
<td>14.97</td>
<td>72.6</td>
<td>26.2</td>
</tr>
<tr>
<td>Reed Mill</td>
<td>440</td>
<td>11.12</td>
<td>95.8</td>
<td>0</td>
</tr>
<tr>
<td>Watauga Creek</td>
<td>1,675</td>
<td>40.64</td>
<td>87.3</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Figure 1: Watersheds in this study

Spatial Data Collection
Watershed boundaries were delineated from US Geological Survey (USGS) National Elevation Datasets (NED), 10 meter resolution, using a flowpath analysis (Bolstad, 2005). These boundaries were used to extract elevation, slope, roads, soils, stream, and land use data from developed and new sources. Elevation data were derived from three sources. Ten meter (NED) and 30 meter (1:24,000 scale quad-based) resolution raster data were extracted from USGS sources, and slope derived using a third-order finite difference algorithm (Bolstad, 2005) for all study watersheds. A three-meter resolution DEM was created from digitized contours of a 1:7,200 paper map produced by the US Forest Service for the Dryman Fork basin. Roads were extracted from 1:24,000 scale USGS digital line graph data, and updated based on
interpretation of May 2003 SPOT 2.5 meter satellite images. Soils data were digitized from US Natural Resource Conservation Service soil survey data, both county-level (SSURGO) and statewide (STATSGO).

Land use data were derived from two sources. Moderate resolution data were extracted from the 1990s National Land Cover Dataset (NLCD, Vogelman et al., 1998). Landcover was resolved into one of 21 potential classes for 30 meter cells for the entire United States based primarily on early 1990s Landsat satellite images, 30 meter DEMs, and US Census data. Data were extracted for each study watershed. From four to 10 categories were present in the watersheds. Classification accuracies were above 60% for all watersheds, and above 86% when aggregating mature forest classes.

High resolution land use (UMN) data were manually interpreted from resolution-merged SPOT satellite images collected in May 2003. Panchromatic 2.5 meter data were merged with 10 meter multispectral data using a principal component transform (Pohl and Van Generen, 1998). Land use was assigned to NLCD categories. Withheld points indicate the classification accuracy above 96% when aggregating mature forest classes.

Water Sampling
Flow data and water quality samples were gathered with automated pumping samplers, as described in Riedel et al., (2004). Stream stage was logged on 15 minute intervals with submerged pressure transducers. Data were checked via manual gauging on a weekly basis. Samplers collected water samples, calibrated via manual depth integrated sampling, under baseline conditions and storm flow conditions. Samples were analyzed gravimetrically to determine total suspended solids (TSS) to 1.5 μm and combusted to determine ash-free dry weight (USGS, 1978).

Field Data Analysis
Sediment concentration data were paired with discharge data based upon sediment/discharge rating curves to calculate sediment transport during the calibration period. Due to hysteretic relationship between sediment and discharge on Addie Branch and Dryman Fork, separate rating curves were generated for rising and falling limb of stormflow hydrographs. The curves were generated using filtered data. Filtering was based on hydrograph regime. dQ/dt, computed as the percent difference in stream flow over three consecutive intervals; a one percent threshold for dQ/dt most consistently differentiated hydrograph regime. The reader is directed to Riedel, et al., (2004) for a complete discussion of the methods. A summary of filtering is shown in Table 2. Cumulative sediment transport was estimated for an approximate two-month period spanning June and July, 2003.

<table>
<thead>
<tr>
<th>Percent change in slope</th>
<th>Hydrograph regime</th>
<th>Sediment regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>dQ/dt > 1</td>
<td>Rising Limb</td>
<td>Proportional increase with flow.</td>
</tr>
<tr>
<td>-1 < dQ/dt < 1</td>
<td>Baseflow</td>
<td>Low (<10 ppm)</td>
</tr>
<tr>
<td>dQ/dt < -1</td>
<td>Recession Limb</td>
<td>Disproportional decrease with flow, then low (<10 ppm).</td>
</tr>
</tbody>
</table>

Model Runs
Sediment yield was estimated through application of the WCS model, sediment tool module (Tetra Tech, 2000). WCS-SED uses the USLE to calculate surface erosion and variable transport equations to estimate delivery to water courses (Yagow 1988, Sun and McNulty 1998). Sediment yield is assumed equal to delivery, thereby assuming no bank erosion or net in-stream source or sink. All model runs were conducted for the two-month sampling period, adjusting period rainfall from annual sums based on observed relative rainfall intensity.
Multiple model runs were performed, varying the source of elevation (and hence slope), soils, and land use data. Precipitation amount and characteristics derived from the nearby Coweeta Hydrologic Lab weather station were used to specify the USLE R factor, held constant across all runs. Soil erodibility factors (K) were derived from NRCS source materials for digital soils data, slope factors (LS) from digital elevation models, and cropping management factors (C) from NRCS entries that matched the land use categories.

Models were run across a coarse and fine-resolution elevation (30 m and 10 m), soils (STATSGO and SSURGO), and land use data. Precipitation amount and characteristics derived from the nearby Coweeta Hydrologic Lab weather station were used to specify the USLE R factor, held constant across all runs. Soil erodibility factors (K) were derived from NRCS source materials for digital soils data, slope factors (LS) from digital elevation models, and cropping management factors (C) from NRCS entries that matched the land use categories.

Stream network was held constant across a primary set of runs at a threshold. The stream network is defined in WCS-SED by a contributing area threshold. First order streams are initiated when an upstream, contributing area exceeds a specific area. Streams accrete downstream, joining to form higher order streams in a network. We varied the threshold to best match the stream network observed in the field, arriving at a value of 1600 for a 10 meter resolution DEM to match the observed stream density. All the initial runs over the combinations of soils, DEM resolution, and land use data were conducted at this threshold. A second set of runs were performed to estimate the impact of inferred stream density on estimated sediment yield, using the highest resolution data (SSURGO soils, 10 m DEM, and UMN-SPOT based 2.5 meter land use data). Stream thresholds were varied at 50, 450, 1600, and 2500 10 m cells, all other data constant.

RESULTS

Land Use
Forest land use dominated the study watersheds, with between approximately 73 to 100% forest extent (Table 2). Estimates of forest area varied only slightly between the NLCD and UMN-SPOT high resolution data sources, although there were substantial differences when resolving forest types. Differences among forest types are illusory when estimating erosion in this region of the southern Appalachians, as rates are effectively zero in most closed-canopy forest types.

There were substantial differences in the amount of urban and transitional urban land uses when comparing the NLCD and higher resolution UMN-SPOT data (Table 2).

Table 2: Land use data for the five study watersheds, based on an interpretation of 2003 SPOT high-resolution satellite images (UMN) or 1990s NLCD data (NLCD). Land use classes are reported in percent.

<table>
<thead>
<tr>
<th></th>
<th>Addie Branch</th>
<th>Dryman Fork</th>
<th>Reed Mill</th>
<th>Sutton Branch</th>
<th>Watauga</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>Dense</td>
<td>Urban</td>
<td>High Urban</td>
<td>Deciduous Forest</td>
</tr>
<tr>
<td></td>
<td>UMN</td>
<td>NLCD</td>
<td>UMN</td>
<td>NLCD</td>
<td>UMN</td>
</tr>
<tr>
<td>Low Dense Urban</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>4.22</td>
</tr>
<tr>
<td>High Dense Urban</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Transitional Urban</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Deciduous Forest</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>93.64</td>
<td>0.00</td>
</tr>
<tr>
<td>Evergreen Forest</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.37</td>
<td>0.00</td>
</tr>
<tr>
<td>Mixed Forest</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>5.93</td>
<td>95.78</td>
</tr>
<tr>
<td>Pasture/ Hay</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>Row Crops</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Other Grasses</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Woody Wetlands</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Observed Sediment Yield
Sediment yield for the two-month monitoring period were generally within limits observed in previous studies in the region, with mean baseflow sediment concentrations typically varying between 1 and 7 ppm, and maximum stormflow concentrations ranging from approximately 15 to 40 ppm. Two-month observed yields vary between 4.2 and 57.3 kg/ha (Figure 2), equivalent to approximate annualized yields of 0.025 to 0.344 t/ha/year. These fall within the ranges observed for eastern forests.

Sediment yield was strongly influenced by percent non-forest, primarily agricultural and low density residential development. Sutton Branch is the only watershed with substantial areas in agriculture, primarily pasture and hayfields in near-stream areas. Despite nearly 100% perennial vegetation in this watershed, substantially higher sediment yield values were observed than in predominantly forested watersheds and in watersheds with lower levels of development. Two watersheds, Reed Mill and Watauga Creek, were characterized by low density and transitional suburban/rural land uses in less 2 to 5% of their surface area, and pasture and hay in 1 to 7% of their surface, and these watersheds exhibited commensurately lower sediment yields than Sutton Branch. Road density was not well correlated with sediment yield, with Watauga Creek and Dryman Fork exhibiting the highest values (4.0 and 4.2 km/km², respectively), Sutton Branch and Reed Mill intermediate (0.11 and 0.14 km/km²), and Addie Branch the lowest density (0.065 km/km²).

![Figure 2. Observed sediment yield during June and July, 2003, plotted vs. percent non-forest in each study watershed](image)

Modeled Sediment Yield
Predicted WCS-SED sediment yield was higher than observed yield for four of the five measured watersheds, typically by a factor of three to four (Figure 3). Modeled sediment yield for Sutton Branch was approximately one-third lower than observe sediment yield. Modeled sediment yield followed these patterns irrespective of the combination of digital elevation model resolution, land use data source, and soils data used. Previous work has found that modeled sediment yield is often higher than observed yield when using the USLE and related functions, both within the framework of WCS-SED, and within other systems (Ward and Trimble 2003, Wu et al., 2004, Riedel et al. 2005).

There may be many sources for this over prediction, including overestimation of erosion via the constituent USLE factors and erroneous estimation of transport. USLE factors have been developed and validated over a large range of conditions, and assume a field length 72.6 ft, or approximately 22 m. This dimension is spanned by the range of DEM cell sizes used in these calculations. However, slopes may not be accurately
represented at this resolution, with elevation errors on the order of a few meters common. Previous work has shown more accurate estimates of yield when finer-grained DEMs are used (Riedel et al., 2004), however it is not clear whether this increased accuracy is due to improved estimates of erosion or improved estimates of sediment transport.

Figure 3. Predicted and observed sediment yield for five study watersheds for the period encompassing June and July, 2003. Predicted values were based on USGS 10 meter DEMs, NRCS SSURGO data, and 2003 land use data derived from a manual interpretation of SPOT 2.5-10m pan sharpened image data.

Estimated sediment yield was only inconsistently sensitive to cell resolution, with higher, lower, and similar yield predictions among 10 and 30 meter DEMs. Yield was sensitive to soil source with SSURGO-based predictions consistently 10 to 30% lower than STATSGO-based predictions. Yield was most sensitive to the C factors used in the USLE, and plausible C values resulted in substantially improved predictions for the agriculturally-dominated watershed, Sutton Branch (Figure 4). Initial model runs employed the best estimated C values for the predominant land uses given the site conditions and published tables (0.005 and 0.003 for pasture and forest, respectively). USLE C values span a wide range of values to reflect the density and stature of vegetation. Forest areas in this study were characterized by greater than 85% crown cover, and pasture by greater than 95% vegetation cover, and standard model runs employed the appropriate C values. Our initial runs may have used inappropriately high C values on forested sites and low C values on pasture sites, which might lead to the observed errors. However, sediment yield was overpredicted by a factor of more than two at extremely low C values (0.0005/0.0003) on predominantly forested sites, and as expected, sediment yields for higher than indicated C values increased overprediction on Dryman, Addie, Watauga, and Reed watersheds accordingly. We conclude that no plausible range of C values in forested sites are likely to improve estimation of sediment yield. However, an increase in C values for agricultural lands improved agreement between predicted and observed sediment yield on Sutton Branch (Figure 4), the lone watershed with substantial agricultural lands.

Predicted sediment yields were also strongly dependent on the threshold that established stream network density. Increasing the threshold substantially reduced the stream network, with a substantial reduction in estimated sediment. Sediment yield varied from 10 to 37 kg/ha as the stream threshold varied from 2500 to
50 10-meter cells. The lowest threshold generated approximately one-half the known reaches in the study watersheds, and still predicted more than twice the observed sediment yield for our study period.

We suspect sediment transport equations or poor estimates of road-generated sediment are primarily responsible for the large errors observed in estimated sediment yield, particularly on the four watersheds with little agriculture. Transport equations used in WCS-SED rest on a narrow empirical base, and need be tested over a wider range of conditions. The equations have been developed in one to a few studies, with a limited range of soils, land uses, terrain, and soil conditions. In addition, the study areas have high road densities for predominantly rural areas, a legacy of dispersed small holdings and active forest management. A majority of the roads are unpaved and are significant sources of sediment to streams (Riedel et al., 2005).

Figure 4. Sediment yield by USLE C values used in estimating sediment deliver to streams. Implausibly low C values did not substantially improve estimated yield, while plausibly high values substantially degraded model performance.

CONCLUSIONS

Sediment yields predicted by WCS-SED were substantially higher than observed values over a summer study period on four of five study watersheds in the southern Appalachian Mountains. The general trend in observed sediment yield were replicated in predictions, but predicted values were generally three to four times higher than observed sediment yields. This increase was consistent across completely forested watersheds, and across watersheds with significant near-stream development. Predicted values were lower than observed values for Sutton Branch, the study watershed with the highest proportion of non-forest land use.

Predicted sediment yield was only slightly dependent on source data resolution. While predictions were generally better when using finer resolution SSURGO soils, SPOT-based land use, and 10 m DEMs, improvements were slight relative to the observed error.

Acknowledgements: This work was supported by NSF via the Coweeta Long-Term Ecological Research Project, and by the University of Minnesota Agricultural Experiment Station. We thank Charles Marshall and Ryan Kirk for primary data collection.
REFERENCES

MODEL DEMONSTRATIONS
POSTERS, AND DINNER
Grande Expo Hall
Model demos and Posters-11. Wednesday, April 5, 4:30pm–9:00pm. A 4 hr hour session for computer models and technical posters is offered. A light dinner by stations will be served between 6:00pm and 7:30pm, during the demonstrations. See list of Poster Papers in the technical section of this program. Additional dinner tickets may be purchased for $25 each.

FIELD TRIPS
Note: field trips are subject to cancellation and refund in case of poor weather conditions or insufficient number of participants. A $25 fee will be charged if you cancel out of a field trip after March 15, 2006. NOTE: Field trips convene at Pre-Function Salon 15 minutes prior to departure.

Sunday, April 2, 2006
"Lower Truckee River Operations for Restoration: Reno to Pyramid Lake": 9am–4:30pm $40 including lunch. Registration by March 15 required for lunch. Presented by U.S. Bureau of Reclamation, U.S. Fish and Wildlife Service, Nevada Department of Environmental Protection, Washoe County Department of Water Resources, The Nature Conservancy, and Chad Gourley. Geomorphologist. This tour will concentrate on the physical changes made to the lower Truckee River during the last century, along with resulting erosion, flooding, and water quality/quantity impacts. Some of the methods which have been and will be put into place to mitigate these impacts will be covered. Truckee River operations for water supply, flood control, restoration of cottonwoods and the threatened Lahontan Cutthroat Trout and rarelanded Cut-Ul in Pyramid Lake will be discussed. Planned stops include: 1) Truckee River at Vista, where the history of the Vista Reefs impacts and subsequent removal will be explained. 2) McCarran Ranch, where the river restoration project carried out by The Nature Conservancy will be covered. 3) Derby Dam, which has a major impact on Truckee River flows and the resulting health of both the river and of Pyramid Lake below this point. 4) Cottonwood restoration area near Wadsworth, where the US Fish and Wildlife Service will discuss the Variable Instream Flow Strategy to manage flows for fish migration, cottonwood recruitment and water quality/quantity impacts. 5) Marble Bluff Dam and Fish Passage Facility, where the Bureau of Reclamation will discuss how the dam has stopped the Truckee's headcutting upstream, and the Fish and Wildlife Service will describe the fish passage facility. While en route, key facilities, structures, and diversions along the way will be pointed out and their role in river operations explained.

"Lake Tahoe and Upper Truckee River Region: River and Reservoir Operations, Tahoe City to Reno": 9am–4:30pm $40 including lunch. Registration by March 15 required for lunch. Presented by U.S. Geological Survey, U.S. District Court Water Master's Office, Truckee Meadows Water Authority, and the U.S. Bureau of Reclamation. This tour will concentrate on the history of Lake Tahoe, the Truckee River and their complex operation for water supply, flood control, recreation, power generation, environmental concerns and the restoration of two endangered species of fish in Pyramid Lake. At Meeks Bay, glaciation which occurred in the Tahoe Region will be discussed. Stops will include Lake Tahoe Dam, the Truckee River gage below Lake Tahoe Dam, Meeks Bay, Donner Lake, Boca Dam, Stampede Dam, Gray Creek (viewpoint), and a tour of the Chalk Bluffs Water Treatment Plant in Reno. While en route, key facilities, structures, gages, and diversions along the way will be pointed out and their role in river operations explained.

"Restoring Ecological Integrity to the Carson River": Carson River from Genoa to Dayton, NV Area: 10 am–4 pm $40 including lunch. Registration by March 15 required for lunch. Presented by Dayton Valley Conservation District, Carson Valley Conservation District, Western Nevada Conservation and Development Office, Carson Water Subconservancy District, and The Nature Conservancy. Man-caused changes to the Carson River watershed since the 1850s due to agriculture and mining have caused major degradation to the river channel and watershed. The degraded state of the river exacerbated the damage caused by the major January 1987 flood, and considerable erosion and damage to the banks.
INTERDISCIPLINARY SOLUTIONS FOR WATERSHED SUSTAINABILITY

SILVER LEGACY HOTEL
APRIL 2 - 6, 2006
RENO, NEVADA USA