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A METHOD FOR DETERMINING THE MINIMUM DURATION
OF WATERSHED EXPERIMENTS

Jacob L. Kovner and Thomas C. Evans

Abstract--A simple graphic solution is described for approximating the length of time
required to detect significant differences between treatments on experimental watersheds.

Introduction- -An increasing awareness of the importance of water to local and national welfare
has prompted numerous small watershed studies of the relationship between streamflow and forest
cover. The experimental methods in use are quite varied, but in general resemble the familiar
pattern of comparing some element of streamflow on treated watersheds with that of untreated or
control watersheds.

One very simple and popular design, used extensively at the Coweeta Hydrologic Laboratory
in North Carolina, employs two watersheds with similar streamflow characteristics. Ordinarily
this also means similar elevations, aspects, climates, and soil complexes. Prior to treatment,
measurements of streamflow (such as yield, storm peaks, sedimentation, and quality) are collected
on both watersheds for a number of years known as the period of calibration. These data are used
to establish the regression of a streamflow characteristic of one watershed upon the other. By
this method, variation not associated with treatment (for example, differences such as temperature
and rainfall for different years) is placed under statistical control in the subsequent test of differ-
ence in streamflow characteristics between the calibration and treatment periods. Following cali-
bration, one of the watersheds is treated according to the specifications of some land-use or forest
management practice, and measurements of streamflow continued until the investigator is satisfied
that an adequate test of treatment effects has been made.

Analysis of the two sets of data, one set for each period, is by the method of covariance
[SNEDECOR, 1946], which supplies a significance test of the adjusted difference due to treatment.
WILM [1944, 1949] has demonstrated the method, using an example of annual discharge or yield
from a control and treated watershed. In addition, by making the logical and simple assumption
that equal samples (for example, streamflow records of equal duration) are drawn from each of
the two periods, he has arrived at a method of successive approximations for estimating how long
the calibration period should be.

A more general solution can be derived for the length of both the calibration and treatment
periods. Under the conditions of the test it need not be assumed that the periods are of equal length.
On some watershed studies, calibration data have been accumulated for relatively long periods.
Here, of course, treatment may be applied at once, and it is of interest to the investigator to antic-
ipate how long the post-treatment observation should be continued. It is also frequently necessary
to estimate appropriate time intervals for spacing successive treatments, as in the case of remov-
ing a forest cover in a series of partial cuts. Furthermore, when the effect of the treatment is
short-lived, longer periods of observation tend to mask the effect. Again, when funds, personnel,
and the physical resource in land are limited, estimates of the length of post-treatment period are
powerful aids to long-time planning and assignment of project priorities.

It is the purpose of this paper to propose a method of estimating the minimum length of the
treatment period, and of a whole watershed experiment, and to arrive at a simplication of WILM's
[1949] technique by substituting a graphic solution for the more laborious method of successive
approximations.

Method of analysis—With a slight modification to admit periods of unequal length, the equation
for the square of a mean difference after WILM [1949] may be written

d2 = Sy.x
2 F [1/nj + l/n2 + (X1 - X2)

2/SX
2] (1)

608



[Hydrology] MINIMUM DURATION OF WATERSHED EXPERIMENTS 809

where Sjf is the within treatment pooled sum of squares of the independent variable, n^ and no
are the number of observations in the calibration and treatment periods, respectively, Sy.j2 is the
experimental variance developed from residual deviations from regression, and F is the variance
ratio.

Some simplification of (1) is possible by substituting the approximation

(jq - X2)2 ̂  F sx2 (l/ni + l/n2)

and remembering that

sx2 = Sx2/nj + n2 - 2

By appropriate substitution and rearrangement (1) resolves to

V (2)
+ n2 - 2 -

wherein F has degrees of freedom equal to unity and n^ + ng - 3.

Because it leads to better graphical presentation, the form in (2) is preferred to the more
common d/s x.

With nj and an estimate of Sy.x
2 both taken from the calibration data, and an experience value

for the smallest worthwhile difference, d, (2) might be solved for n2 by the method of successive
approximations. A simpler solution is possible by graphics. Figure 1 shows the relation (2) as a
family of curves for values of n2 with F at a probability level of 0.05. Sample calculations for
deriving plotting points are shown in Table 1, which contains the solution for n2 = 5. Similar com-
putations at P = 0.01 would complete the usual working range of significance.

Table l--Sample computations for sy.x
2/d2 for n2 = 5, P = 0.05

nl

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

n1+n2-2

6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21
22
23

nl + "2 • 3 ,
(D. F.)

5 6
6 5.
7 5.
8 5
9 5
10 4
11 4
12 4
13 4
14 4
15 4
16 4.
17 4
18 4.
19 4.
20 4.
21 4
22 4.

F
F(l i )

HI + n2 - 2

61 13.8920
99 11.1156
59 9.4963
32 8.4647
12 7.7414
96 7.1965
84 6.7920
75 6.4857
67 6.2279
60 6.0108
54 5.8285
49 5.6758
45 5.5500
41 5.4336
38 5.3392
35 5.2509
32 5.1684
30 5.1041

nln2
nl + n2

1.8750
2.2222
2.5000
2.7273
2.9167
3.0769
3.2143
3.3333
3.4375
3.5294
3.6111
3.6842
3.7500
3.8095
3.8636
3.9130
3.9583
4.0000

„ 2Sy.x

d2

0.1350
0.1999
0.2633
0.3222
0.3768
0.4276
0.4733
0.5140
0.5520
0.5872
0.6196
0.6492
0.6756
0.7011
0.7237
0.7451
0.7660
0.7837

With these curves, the estimated minimum length of the post-treatment period is readily solved
and d are known, for it is necessary only to compute S

2 2
if n}, sy.x
at the coordinate value determined by
the required estimate of n.

y.x
2 2/ d , and enter the curves

and Sy.x/d2. The curve nearest the coordinate point is
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Fig. 1--Graphic solution of the equation

nin2 r
n l + n 2 F

L y- 2 .

16 19 20

for the purpose of estimating length
of calibration and treatment periods

Of course, of the three quantities, only n^ is known precisely before the treatment is installed.
The variance s^.x

2 is an estimate of the pooled residual variances around regression to be ob-
tained after the post-treatment period, and d is generally predetermined by practical considera-
tions based on experience [WILM, 1949],

Examples of the method--The data in Table 2, showing annual water yields, were obtained
from records at the Coweeta Hydrologic Laboratory. Data are given for both a calibration and
treatment period so as to permit an estimate of n^ and an empirical check of the estimate.

The error variance for the calibration period Sy.x
2 is 2.389; n^ is 12. An experience value

for the smallest worthwhile difference, d, may be taken as five per cent of the mean yield for the
calibration period of the watershed subsequently chosen for treatment. Then 0.05 x 28.916 = 1.446
area-inches, which provides

Sy.x
2/d2 = 2.389/2.090 = 1.143

Entering Figure 1 with n^ = 12 and Sy.x
2/d2 = 1.143, the curve nearest this point is n2 = 12. It is

estimated, therefore, that the treatment would have to run 12 years in order that a difference of
1.446 area-inches may be judged significant at a probability level of 0.05.
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Table 2--Annual discharge from Watersheds A and B

611

(discharge in

Calibration
period

1934-1945
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945

Watershed
A

33.89
13.16
12.20
22.57
32.87
27.89
16.73
35.36
20.82
30.71
53.38
38.79

B
35.53
15.38
12.96
23.58
33.82
31.64
17.75
34.99
23.74
31.35
49.13
37.12

area- inches)

Treatment
period

1946-1952
1946
1947
1948
1949
1950
1951
1952

Watershed
A

12.17
15.03
25.50
46.76
38.33
30.48
51.87

B
16.01
20.83
28.07
45.88
39.00
31.58
52.43

Total 338.37 346.99

Average 28.198 28.916

220.14 233.80

31.449 33.400

Similar computations at other values of d (Table 3) show that if the experiment must be con-
cluded within, say five years, then a treatment effect less than 2.00 area-inches cannot be expected
to appear significant. If, on the other hand, the smallest worthwhile difference could be increased
to ten per cent, a three-year test is likely to detect a difference of approximately 3.0 area-inches.

Table 3--Solution for length of treatment period

Precision as per cent of mean
discharge on Watershed B

Least significant difference,
in

5
6
8

10

area- inches, d d2

1.446 2
1.735 3
2.313 5
2.892 8

Sy.x /d^

.091 1

.010 0

.350 0

.364 0

nl
years

n3
years

.143 12 12

.794 12 7

.447 12 4

.286 12 3

By way of verification, an analysis of covariance was run on the treatment data on Table 2,
testing for significance of the adjusted mean yields. The analysis was applied first at the end of
the three-year treatment period 1946-1948, and then successively for the 1946-1949, 1946-1950,
1946-1951, and 1946-1952 treatment periods, as would be done in actual practice. The analysis
shows that it was necessary to run the treatment for seven years, 1946-1952, in order to show a
real difference of 1.66 area-inches due to treatment. This Is 5.7 pet of the calibration mean yield
on Watershed B. Referring to Table 3, we find that the estimate of n% = 7 years for a least signi-
ficant difference equal to six per cent of this mean is in agreement with actual results.

The curves can also be used to determine how long the calibration period should be when we
have an estimate of Sy.x2, however obtained. This is an alternate method to that proposed by
WILM [1949] using successive approximations. In this case it is only necessary to take equal sam-
ples, that is nj = n,. Thus s ^/d^ is calculated as previously. Then we enter the vertical scale
at this value and move horizontally along this ordinate until that curve is intersected such that
n i = V

As a numerical example, the third line of Table 3 shows d = 2.313 area-inches and Sy.x /d -
0.447; we find that along the 0.447 ordinate the condition that n^ = n^ is satisfied for the value 6.5
years. Noti that we can interpolate between the parametric curves. Therefore, seven years is
probably a good estimate of how long the calibration period should be.

It is interesting to see how the results obtained by this method compare with those given by
WILM [1949, p. 275]. In his example we find that Sy.x

2/d2 = 0.266. Reference to our Figure 1
shows directly that n^ = n% = 5> tna t ; * s> t n e calibration period is estimated at five years. This
agrees precisely with the solution by Wilm. It will be found that the other examples by Wilm can
be solved by the use of Figure 1.
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Finally, the researcher might want to specify the number of samples in the two periods and
have some information regarding the precision or the least significant difference which could be
detected. This can be done by entering the curves with values of n^ and ng and reading the cor-
responding value of Sy.x

2/d2; if an estimate of the numerator, sy.x
2, is available, d2 and d are

readily calculated.

For example, let us take n^ = 12 and ng = 3. Then from Figure 1 the corresponding ordinate
value sy.x

2/d2 is 0.37. Using sy.x
2 = 2.39 from Table 2, d2 = 2.39/0.37 = 6.46, or d = 2.54 area-

inches.

Summary--The investigator is frequently presented with the practical problem of determining
the number of observations required to show a significant difference between two means if the dif-
ference is greater than a fixed amount and some estimate of the variance is known. In hydrologic
research on streamflow with experimental watersheds, a similar problem arises. A simple graphic
method has been presented which provides the following information: (1) Length of the treatment
period following a known extended calibration period; (2) length of the calibration period in advance;
and (3) the smallest difference due to treatment which can be detected as significant at a chosen
probability level, when the length of two periods has been assumed. This method may be applied
in other problems where, in effect, we are comparing two or more regression lines.
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